Симметрическая матрица - definição. O que é Симметрическая матрица. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é Симметрическая матрица - definição

КВАДРАТНАЯ МАТРИЦА, ЭЛЕМЕНТЫ КОТОРОЙ СИММЕТРИЧНЫ ОТНОСИТЕЛЬНО ГЛАВНОЙ ДИАГОНАЛИ
Симметрическая матрица

Симметрическая матрица         

квадратная Матрица S = llsikll, в которой любые два элемента, симметрично расположенные относительно главной диагонали, равны между собой: sik = ski (i, k = 1,2,..., n). С. м. часто рассматривается как матрица коэффициентов некоторой квадратичной формы (См. Квадратичная форма); между теорией С. м. и теорией квадратичных форм существует тесная связь.

Спектральные свойства С. м. с действительными элементами: 1) все корни λ1, λ2,..., λn характеристического уравнения (См. Характеристическое уравнение) С. м. действительны; 2) этим корням соответствуют n попарно ортогональных собственных векторов (См. Собственные векторы) С. м. (n - порядок С. м.). С. м. с действительными элементами всегда представима в виде: S'= ODO-1

.

СИММЕТРИЧЕСКАЯ МАТРИЦА         
квадратная матрица ||aik||, в которой любые два элемента, симметрично расположенные относительно главной диагонали, равны между собой: aik = aki.
Симметричная матрица         
Симметричной (Симметрической) называют квадратную матрицу, элементы которой симметричны относительно главной диагонали. Более формально, симметричной называют такую матрицу A, что \forall i,j: a_{ij}=a_{ji}.

Wikipédia

Симметричная матрица

Симметричной (Симметрической) называют квадратную матрицу, элементы которой симметричны относительно главной диагонали. Более формально, симметричной называют такую матрицу A {\displaystyle A} , что i , j : a i j = a j i {\displaystyle \forall i,j:a_{ij}=a_{ji}} .

Это означает, что она равна её транспонированной матрице:

A = A T {\displaystyle A=A^{T}}